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Abstract 

The affine presentation of general relativity is considered and a possible generalisation of 
the definition of covariant derivative is proposed. Under certain weak symmetry condi- 
tions it is shown that the only theories resulting from this generalisation are general 
relativity and Weyl's theory, of which general relativity arises in the most natural way. 

1. Introduction 

The affine geometrical approach to general relativity requires that 
covariant differentiation be defined in terms of the fundamental symmetric 
tensor gu. Once this is done, the affine paths become the trajectories of the 
theory and the field equations are constructed f rom tensors depending only 
upon the concept of parallel displacement. General relativity therefore 
follows from purely affine properties once the expressions for covariant 
derivatives in terms of Christoffel brackets are obtained. These expressions 
are often derived from a requirement of symmetry in the affine connections, 
and from the four axioms for covariant differentiation given in Section 2 
(Schouten, 1954). 

Other physical theories have been obtained by dropping the requirements 
of  symmetry in gu and in the affine connection, as in Einstein's and in 
Schr6dinger's unified theories (Schr/Sdinger, 1950). Any other affine theories 
which are based on a symmetric fundamental tensor gu, will necessarily 
derive from other expressions for covariant derivative. Thus, by weakening 
the axioms for covariant differentiation (with the exception of the affine 
condition, axiom 1), affine theories of  a more general nature are obtained. 
In this way, Weyl's theory is such a generalisation, in which covariant 
differentiation does not satisfy axiom 4 (Schouten, 1954; Weyl, 1952). 
In this paper the generalisations resulting from a weakening of axiom 3, the 
product rule, are investigated. With only a very weak assumption of 
symmetry, a set of  tensor connections are obtained, expressing the covariant 
derivatives of tensors of each order in terms of gu and a single unspecified 
vector field aL. Of  the requirements of symmetry which may be imposed on 
the connections that are developed, the most natural one leads to a theory 
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physically equivalent to general relativity, and the others produce the 
connection on which Weyl's theory is based. 

2. The Axioms for Covariant Differentiation 

The expressions for covariant differentiation in terms of Christoffel 
brackets may be derived from a requirement of symmetry in the affine 
connection, together with the following axioms (Schouten, 1954): 

(1) The covariant derivative of a tensor APe is produced from the ordinary 
derivative together with terms linear in APe, the result being a tensor. (The 
notation adopted here is that in which capital letters represent ordered 
sets of suffixes.) 

APe;t = Aeo,l + 1-'e'o.LS'I AIs (2.1) 

Here the/~e'e.1.J' ~ stand for a whole array of affine connections, which 
so far are not related. Even for vectors, the affine connections involved in 
the definitions of A~;~ and A~;z are not assumed to be related. 

(2) The covariant derivative of a scalar is the ordinary derivative: 

q~;, = r (2.2) 

(3) The covariant derivative of a product is given by Leibnitz' rule, in 
terms of the covariant derivatives of each factor: 

(AVe BRs);l = AeQ;t BRs + A~'Q BRs;t (2.3) 

(4) Raising and lowering of tensor suffixes by means ofg~j is an operation 
which commutes with covariant differentiation, e.g. : 

gRP APQ;~ = ARO;Z (2.4) 

Here, gRP denotes the product g~, j, gi2 J2 ... gl, j, where R is the ordered 
set (il, i2 . . . .  i,) and P is the ordered set (Jl,J2 . . . .  L). 

In this paper, Leibnitz' rule is not assumed. However, equation (2.1) of 
axiom 1, allows us to write for the derivative of the product of tensors 
A~'o and BRs: 

(APe BRs);z = APQ;Z BRs q- APe BRs;I q- UPQ/Rsd.J/KL't AXs B~L, (2.5) 

where UPQ/Rs.LS/KL'Z is a set of functions of position, not depending on 
Aea or BRs. Equation (2.5) represents the generalised product rule, weakened 
in the only possible way consistent with the other axioms. 

Wherever possible, only products of contravariant tensors will be 
considered, so that UeC,/Rr162 (where r is the null set) is abbreviated to 
uP/R'HK.~ i.e. 

(AP BR); t = AP;zB R + A~'BR;I + UP/R'r/K.~AI B~ 
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3. Differentiation Without  the Product Rule 

We first note that, according to equation (2.5) and axiom 4, the U-tensor 
depends only upon the ranks of the factors involved, and not upon their 
tensor characters. Suffixes may therefore be raised and lowered in U by 
means of g~j. 

From (2.5), the U-tensors may be expressed in terms of connections 
through the relation 

3P ~J r~ .  fn(PR)'(QS).(IK).(JL)'I = ~RK~LsI~P'Q,I.J'I  ~- I Q J" S.K.L'I ~- 
rfe /R s~ L. (3.1) -~ ~' Q S,I. K l 

Here, (PR)  represents the ordered set of suffixes P, followed by the ordered 
set R, etc. The condition that the correct covariant derivative for a lower 
rank tensor must be obtained when on contraction of suffixes in the co- 
variant derivative of a tensor, gives the equation 

F(PR)'(QR).(IK).(JL)'t = ~LK I~t~'Q.LJ'I (3.2) 

Equation (3.2) allows us to express axiom 2 by the single relation: 

FP'~.i.i"l = 0 (3.3) 

and using this equation, we deduce that 

UPo/RR. J/i(L'l = 0 (3.4) 

by putting R = S in (3.1). Equations (3.1) and (3.2) may now be used to 
derive the relation 

UP/ORR.I/+rL" t = ~LK Ue/O'I/s. l (3.5) 

so that Ue/4"i/r = 0, i.e. Leibnitz' product rule applies to products of 
scalars with tensors. In fact, since the whole argument may be reversed, the 
relation (3.4) is equivalent to axiom 2. 

Now equation (3.1) is used to reduce the connections ]~PQR'~.IJK(~" l to 
three connections of the type Ne'+.r.4"z. By making the reduction in two 
ways, we obtain the relation 

uP/QR'I/JK,I ~- ~PI uQ/R' j /K.I  = uQ/RP'J/KI,t  @ ~QJ uR/P'K[I.1 (3.6) 

Apart from the relations already given, there remain only the obvious 
symmetry relations 

UV/e'x/j.z = UO/V'a/m (3.7) 

uP/QR'I/JK.I = uP/RQ'I/KJ.I (3.8) 

By making use of the relations (3.6) to (3.8), all U-tensors of a certain 
tensor order are expressible in terms of any particular one of that order, 
together with U-tensors of lower orders. Apart from the restriction (3.4), 
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one tensor of each order may thus be chosen quite freely. In Section 4, we 
shall consider U-tensors which satisfy the one extra symmetry relation 

UP/OR'I/SK.Z = UO/1"R's/IK.I (3.9) 

where, of course, P and Q have the same number of members. In this case, 
we show that all U-tensors are determined in terms of rrv/q. ~'J i/j.l" 

4. The Symmetric U-tensor 

By using the extra condition (3.9), it may now be shown that the U- 
tensors are equal to vectors multiplied by delta symbols, and further, that 
the vectors are equal to an unspecified vector, at, or to zero. By substituting 
(3.9) ~ t o  (3.6), we have 

8ei uO/R'j/K.Z = 8Qs UR/P'K/m (4. I) 

whence, putting P and /equa l  to M, 

uQ/R ' j /K ,  l = 8Qj UR/M'K/M. l = 8Qj 8RK1 

Using the symmetry relation (3.7), 

BOa SRKt = 8RK Sast 

and putting Q and J equal to N, 

S RKI = ~RK SNNI = 8RK at 

ur/o'i/s.z may therefore be written in terms of a vector a~ <p, o), depending 
upon p & q, the number of members of P, Q respectively: 

UP/a'i/s.l = 8PI 8as al ~v' q) (4.2) 

Equations (3.4) and (3.5) give 
alCp, 0) = 0, (4.3) 
al<p, o) = al(p+2, o (4.4) 

From these two relations, together with the symmetry relation, at<',a)= 
at <q'p), we deduce that a~ <",~) = 0 unless both p and q are odd, when 
az<p, q) = a d, 1) (=at). The product rules are now completely determined in 
terms of the single vector at. 

P. J.  The general connect ion, /"  o.L t can now be conveniently expressed in 
terms of the two basic connections involved in the derivatives of contra- 
variant and covariant vectors. For simplicity we write 

/"~.~.r = FPn 

Pr162 = --~2i~z 

Using (3.1), the general connection may be expressed: 

t' Z _r'..,.,/8..,.,- Z ] l"e'O.I,  s't  = 51"1 ~prcP qr~zQ '7,U q, + mat (4.5) 
/ \ ir~1 JrcJ 
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where m is [(p + q)/2]. In fact, this general connection may be expressed in 
terms of at a n d / "  alone, since by (3.3), we have the relation 

52~, - / ' P i l  = 8P~ at (4.6) 

An expression for the covariant derivative of the tensor geo, from which 
will be determined expressions for the connection (4.5) in terms of gtj will 
be determined in the following section, may be derived by considering 
axiom 4 in relation to (2.5). In general, 

(A i  gio);t  = AI ; tg lo  -~ AX g~o;z + UI/IQ.p/JK'tgjK AP 

From this equation axiom 4 is satisfied if 

geo; z = -- UI/IQ. P/Js.l 

or, by means of (3.5) and (3.6) 

gVQ;l  = UP/Q.I / I , I -  UI/I.V/O.t 

For the U-tensors obtained in this section (4.2), we deduce that 

geo;z = 0 (4.7) 

5. The Connections in Terms  o f  gij  and at 

Starting from equation (4.7), geQ;t = 0,/njk may be obtained in terms of 
gtj and at, the other connections in (2.2) following from (4.5) and (4.6). 
Equation (4.7) gives, on taking P = {p}, Q = {q}, 

&,q,1 - ]?*pt giq - Fiql gp~ - at gp~ = 0 

From this expression, we deduce in the usual manner (Schouten, 1954; 
SchrSdinger, 1950) that 

pt  { i  } . i , .  /~b •  Fb ~ i 
j k =  j k  + s  skb j.~Sv ,~jb vka r - F  jk--�89 

(5.1) 

where the antisymmetric part 1-'ijk remains completely arbitrary. 
v 

In the affine approach to general relativity, the affine connection/'tik, 
derived from axioms 1-4, is restricted to be symmetric in j and k. In the 
case of the connections given by (4.5), a restriction of this sort will involve 
the two connections Fiik and f2tjk. The most natural restriction is one which 
maintains symmetry between F and s 

I'iJkv + ~2t~kv = 0 (5.2) 
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i _ _  a relation which reduces t o / "  jk -- 0, when at = 0, since in this case /'~jk = 
V V 

X2t~k. Using (5.2), and (4.6), we obtain f rom (5.1) the expressions 
V 

F j ~ -  J k  - 2  j -k  

and 

l i l  �9 
jk = j k + �89 as 

give the following formulae for the covariant The connections (5.3) 
derivatives of tensors of each order: 

q~;m=C}/m, A i " - •  A i ;m ~ A ~ l m  2 rn 
�9 ; m  "" i n ~ i j k  A i J ; r  n = A i J i m  , A uk = A I j k l m  - -  2 ~ m . ~  

A i g t a ; m  = A i j k t / m  , etc. 

where AM/,, denotes covariant differentiation with respect to Christoffel 
brackets. 

The affine paths of the connections (5.2) are, in fact, identical to the 
geodesics of  a Riemann geometry with metric ds = ( g i j d x i d x J )  ~/2, for the 
connections are projectively related to the Christoffel brackets. As for 
field equations, there are two fundamental affine tensors which may be 
obtained from (5.3). The concept of parallel displacement of  a vector 
enables us to construct in the usual way a curvature tensor, 

_ ~ t j k  I t = R jk~ + �89 t - ~ija~,k) 

where Rtj~l is the usual Riemann curvature tensor for metric gu. Another 
affine tensor, Stj = at,j - a j, t may be constructed by the path dependence 
on parallel transfer of the length of a vector. F rom these two basic affine 
tensors, the usual field equations of general relativity may be constructed 
since Rtj = -Ru + Stj. Moreover, any further equations restricting S u will 
not affect the paths of the theory at all, so that a theory physically equivalent 
to general relativity is obtained. 

Although (5.2) would seem to be the most natural restriction which 
i _ _  reduces to F t - 0, when az 0, the restriction/~ jk - 0 itself also satisfies j k - -  = 

V V 

this condition. In this case we obtain from (5.1), 

F j k =  lr~t a i j k  - ~  J k + ~ 3 i k a j - - g i k a )  (5.4) 

However, by the nature of the restriction, the symmetry between the 
differentiation of covariant and contravariant fields is destroyed. In fact 
we have 

g2,ik = { i } 1 t j k - ~ ( - ~  dak @ ~ikaJ - -  g j k a i )  (5.5) 
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The symmetric connection (5.4) is that on which Weyrs theory is based 
(Weyl, 1952), and its appearance here can be seen as a direct consequence 
of the weakening of the product rule. For one effect of the new rule, implied 
by the connections (4.5), is that the length A~A ~ of the vector A ~ is not 
invariant on parallel transfer of A t. We have 

?~(A#A ~) = At ~A~ ~A i dxk Ai A z 
- ~  + Ai -~ -  + ak- dt 

Taking ~A~/?Jt = 0, we have straight away from axiom 4 that 3Af/3t = O, 
and so 

~(Ai A ~) dx k i 
~t ak-~f  A~A (5.6) 

Equation (5.6) was the basis of Weyl's development of the connection (5.4), 
but whereas it is here developed by dropping the product rule, in Weyrs 
theory axiom 4 is dropped (for instance, 3A~/3t ~ 0 does not imply ~A~/~t = 0 
in Weyl's theory). 

That nothing in addition to Weyl's theory is obtained from the connection 
(5.5) follows on construction of the curvature tensor from (5.5). This is 
found to differ from the Weyl curvature tensor by a gauge invariant term 
3ij(ak,~ -- a~,k), which is anyway one of the affine tensors of the theory. 
Finally, a third possible restriction, s = 0, also produces Weyrs theory. 

V 
i _ _ 1  i i In this case, F jk--2(3kaj  so - -  ~ja~), that 

V 

] ~ j k  ~ I i i 
j k ~(~j ak - ~,~ aj + gj~ a ~) 

,Qijk = ( i } �9 i * 
j k + 1(~  ak + 3k aj -- gjk a ) 

k / 

In this case, the roles of/ '*jk and s are reversed, g2*jk giving the Weyl 
connection, so that Weyl's theory is produced again. 
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